1. What is One Health? – One Health Commission [Internet]. [cited 2021 Aug 24]. Available from: https://www.onehealthcommission.org/en/why_one_health/what_is_one_health/
  2. W M, W M, B B van, F J. Antimicrobial resistance in humans, livestock and the wider environment. Philos Trans R Soc B Biol Sci [Internet]. 2015 [cited 2021 Aug 28];370(1670). Available from: https://royal societypublishing.org/doi/abs/10.1098/rstb.2014.0083
  3. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
  4. Série Segurança do Paciente e Qualidade em Serviços de Saúde. [cited 2021 Aug 24]; Available from: www.gov.br/anvisa/pt-br
  5. M M, L J-M, Di P V, G-E C, V E, B E, et al. A five-component infection control bundle to permanently eliminate a carbapenem-resistant Acinetobacter baumannii spreading in an intensive care unit. Antimicrob Resist Infect Control 2021 101 [Internet]. 2021 Aug 19 [cited 2021 Aug 24];10(1):1–13. Available from: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-021-00990-z
  6. DHL N, K M, JJ L, WX K, OT N, W Z, et al. Environmental colonization and onward clonal transmission of carbapenem-resistant Acinetobacter baumannii (CRAB) in a medical intensive care unit: the case for environmental hygiene. Antimicrob Resist Infect Control [Internet]. 2018 Apr 10 [cited 2021 Aug 28];7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/29644052/
  7. K M, D F. Antibacterial Treatment of Selected High-Touch Objects and Surfaces within Provision of Nursing Care in Terms of Prevention of Healthcare-Associated Infections. Healthcare [Internet]. 2021 Jun 1 [cited 2021 Aug 24];9(6). Available from: /pmc/articles/PMC8228692/
  8. M C, E C, F K, C B, C DC, F R, et al. Specific antibacterial activity of copper alloy touch surfaces in five long-term care facilities for older adults. J Hosp Infect [Internet]. 2020 Mar 1 [cited 2021 Aug 24];104(3):283–92. Available from: https://pubmed.ncbi.nlm.nih.gov/31809775/
  9. S K, JC L. Controlling the Diffusion of Multidrug-Resistant Organisms in Intensive Care Units. Semin Respir Crit Care Med [Internet]. 2019 [cited 2021 Aug 24];40(4):558–68. Available from: https://pubmed.ncbi.nlm.nih.gov/31585481/
  10. Biggest Threats and Data | Antibiotic/Antimicrobial Resistance | CDC [Internet]. [cited 2021 Aug 24]. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html
  11. T B A A, R AA, H T, B NL. World Health Organization Report: Current Crisis of Antibiotic Resistance. Bionanoscience. 2019 Dec 1;9(4):778–88.
  12. SS J, IM G, WS L, PR H. New Drugs for Multidrug-Resistant Gram-Negative Organisms: Time for Stewardship. Drugs [Internet]. 2019 May 1 [cited 2021 Aug 28];79(7):705–14. Available from: https://pubmed.ncbi.nlm.nih.gov/30972660/
  13. S JLM, G AC. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on β-lactams and polymyxins. Brazilian J Microbiol [Internet]. 2016 Dec 1 [cited 2021 Aug 28];47(Suppl 1):31. Available from: /pmc/articles/PMC5156504/
  14. A TM, M MF, C ED La, P CJ, R MA, C-M P. et al. In Vitro Susceptibility to Ceftazidime/Avibactam and Comparators in Clinical Isolates of Enterobacterales from Five Latin American Countries. Antibiot 2020, Vol 9, Page 62 [Internet]. 2020 Feb 5 [cited 2021 Aug 28];9(2):62. Available from: https://www.mdpi.com/2079-6382/9/2/62/htm
  15. JC G-B, TM A, G E, AC G, G L-H, W C, et al. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther [Internet]. 2021 [cited 2021 Aug 23];19(2):197–213. Available from: https://pubmed.ncbi.nlm.nih.gov/32813566/
  16. AJ B. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr Opin Infect Dis [Internet]. 2019 [cited 2021 Aug 23];32(6). Available from: https://pubmed.ncbi.nlm.nih.gov/31567571/
  17. S AK, G V, K A. Role of Phage Therapy in COVID-19 Infection: Future Prospects. Bacteriophages [Working Title] [Internet]. 2021 Mar 25 [cited 2021 Aug 28]; Available from: https://www.intechopen.com/online-first/75947
  18. A A, B B, M E, F A, A E-S, MF A, et al. Learning From Mistakes: The Role of Phages in Pandemics. Front Microbiol [Internet]. 2021 Mar 17 [cited 2021 Aug 28];12. Available from: https://pubmed.ncbi.nlm.nih.gov/33815346/
  19. A I, SB O. Why and How Vaccines Work. Cell [Internet]. 2020 Oct 15 [cited 2021 Aug 28];183(2):290–5. Available from: https://pubmed.ncbi.nlm.nih.gov/33064982/
  20. J C, P S, JE C, B P, A H, A G, et al. Vaccine innovations for emerging infectious diseases-a symposium report. Ann N Y Acad Sci [Internet]. 2020 [cited 2021 Aug 28];1462(1):14–26. Available from: https://pubmed.ncbi.nlm.nih.gov/31659752/
  21. A V, VP H, OH L. Modern Tools for Rapid Diagnostics of Antimicrobial Resistance. Front Cell Infect Microbiol [Internet]. 2020 Jul 15 [cited 2021 Aug 23];10. Available from: https://pubmed.ncbi.nlm.nih.gov/32760676/
  22. M P, G R, J A, MA A, D A, L B, et al. AI-based mobile application to fight antibiotic resistance. Nat Commun [Internet]. 2021 Dec 1 [cited 2021 Aug 23];12(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33608509/
  23. M S-B, M K, C C-A, A A, M B, A G, et al. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One [Internet]. 2020 Jan 1 [cited 2021 Aug 23];15(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31923281/
  24. D E. et al. Inpatient antibiotic resistance: Everyone’s problem – PubMed. J Fam Pract [Internet]. 2018 Feb [cited 2021 Aug 28];67(2):E1–11. Available from: https://pubmed.ncbi.nlm.nih.gov/29400898/
  25. Global Antimicrobial Resistance Diagnostics Market, Strategies, Trends & Forecasts Report 2021-2024 – ResearchAndMarkets.com | Business Wire [Internet]. [cited 2021 Aug 28]. Available from: https://www.businesswire.com/news/home/20210126005527/en/Global-Antimicrobial-Resistance-Diagnostics-Market-Strategies-Trends-Forecasts-Report-2021-2024—ResearchAndMarkets.com . Acessado em 10 de março de 2021.
  26. T FC. The role for rapid molecular diagnostic tests for infectious diseases in precision medicine. https://doi.org/101080/2380899320181425611 [Internet]. 2018 [cited 2021 Aug 28];3(1):69–77. Available from: https://www.tandfonline.com/doi/abs/10.1080/23808993.2018.1425611
  27. M W, S A-O, A G, R K, JA M-O, F R, et al. Reporting elevated vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus: consensus by an International Working Group. Future Microbiol [Internet]. 2019 Mar 1 [cited 2021 Aug 28];14(4):345–52. Available from: https://pubmed.ncbi.nlm.nih.gov/30724113/
  28. M K, MS S, LF W, SG J, NE B, AS L, et al. Implementation of infectious diseases rapid molecular diagnostic tests and antimicrobial stewardship program involvement in acute-care hospitals. Infect Control Hosp Epidemiol [Internet]. 2021 May 1 [cited 2021 Aug 28];42(5):609–11. Available from: https://pubmed.ncbi.nlm.nih.gov/33059776/
  29. CG C, AC R, LCG O, MA J, AC G. Rapid detection of ceftazidime/avibactam resistance by MALDI-TOF MS. J Antimicrob Chemother [Internet]. 2018 Sep 1 [cited 2021 Aug 28];73(9):2579–82. Available from: https://pubmed.ncbi.nlm.nih.gov/29878121/
  30. F B, T P, LJ-H, M T, W T-H, L JC, et al. A Rapid Single-Cell Antimicrobial Susceptibility Testing Workflow for Bloodstream Infections. Biosens 2021, Vol 11, Page 288 [Internet]. 2021 Aug 22 [cited 2021 Sep 2];11(8):288. Available from: https://www.mdpi.com/2079-6374/11/8/288/htm
  31. T S, K K, K M. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J intensive care [Internet]. 2020 Jan 28 [cited 2021 Aug 28];8(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32015881/
  32. E R, PL W, F B. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care [Internet]. 2015 Dec 12 [cited 2021 Aug 28];5(1). Available from: https://pubmed.ncbi.nlm.nih.gov/26261001/
  33. T PD, D Y, B RA, J JK, S PJ, Group ARL. A Primer on AmpC β-Lactamases: Necessary Knowledge for an Increasingly Multidrug-resistant World. Clin Infect Dis An Off Publ Infect Dis Soc Am [Internet]. 2019 Sep 27 [cited 2021 Aug 28];69(8):1446. Available from: /pmc/articles/PMC6763639/
  34. G DA, P DG, B P, M S, M T. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci [Internet]. 2020 Jul 2 [cited 2021 Aug 28];21(14):1–22. Available from: https://pubmed.ncbi.nlm.nih.gov/32708513/
  35. K B. Past and Present Perspectives on β-Lactamases. Antimicrob Agents Chemother [Internet]. 2018 Oct 1 [cited 2021 Aug 28];62(10). Available from: https://pubmed.ncbi.nlm.nih.gov/30061284/
  36. A LN, D ALC. Bacilos gram-negativos produtores de beta-lactamases: que bla bla bla é esse? J Infect Control [Internet]. 2017 Mar 14 [cited 2021 Aug 28];6(1):16–25. Available from: https://jic-abih.com.br/index.php/jic/article/view/173
  37. K AC, Z AP. Canceftolozane-tazobactamtreat nosocomial pneumonia? Lancet InfectDis. 2019 Dec;19(12):1266-1267.
  38. J R-B, B G-G, I M, A P. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev [Internet]. 2018 Apr 1 [cited 2021 Aug 28];31(2). Available from: https://pubmed.ncbi.nlm.nih.gov/29444952/
  39. DL P, B I, A S. New treatment options for multiresistant gram negatives. Curr Opin Infect Dis [Internet]. 2020 Apr 1 [cited 2021 Aug 28];33(2):214–23. Available from: https://pubmed.ncbi.nlm.nih.gov/32068644/
  40. G SL, H REW. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathog Dis [Internet]. 2013 Apr 1 [cited 2021 Aug 28];67(3):159–73. Available from: https://academic.oup.com/femspd/article/67/3/159/2398791
  41. M B, A V, A C, E R, B G. How to manage Pseudomonas aeruginosa infections. Drugs Context [Internet]. 2018 [cited 2021 Aug 28];7. Available from: https://pubmed.ncbi.nlm.nih.gov/29872449/
  42. P P, R G, P G. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis [Internet]. 2019 Jun 1 [cited 2021 Aug 28];6(2):109–19. Available from: https://pubmed.ncbi.nlm.nih.gov/31194018/
  43. PD T, AJ H. Defining the Role of Novel β-Lactam Agents That Target Carbapenem-Resistant Gram-Negative Organisms. J Pediatric Infect Dis Soc [Internet]. 2019 Jul 1 [cited 2021 Aug 28];8(3):251–60. Available from: https://pubmed.ncbi.nlm.nih.gov/30793757/
  44. SS J, YC C, WC L, WS L, PR H, CW H. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J Clin Med [Internet]. 2020 Jan 19 [cited 2021 Aug 28];9(1):275. Available from: https://pubmed.ncbi.nlm.nih.gov/31963877/
  45. PD T, SL A, RA B, AJ M, D van D, CJ C. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin Infect Dis [Internet]. 2021 Apr 8 [cited 2021 Aug 28];72(7):e169–83. Available from: https://pubmed.ncbi.nlm.nih.gov/33106864/
  46. BT T, JM P, AP Z, M P, GL D, A F, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy [Internet]. 2019 Jan 1 [cited 2021 Aug 31];39(1):10–39. Available from: https://pubmed.ncbi.nlm.nih.gov/30710469/
  47. N SC, A MAK, V T, Z Q (Tony), Li J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol Rev [Internet]. 2021 Apr 1 [cited 2021 Aug 31];73(2):679–728. Available from: https://pharmrev.aspetjournals.org/content/73/2/679
  48. Z AP, N RL. Nephrotoxicity of Polymyxins: Is There Any Difference between Colistimethate and Polymyxin B? Antimicrob Agents Chemother [Internet]. 2017 Mar 1 [cited 2021 Aug 31];61(3). Available from: /pmc/articles/PMC5328560/
  49. F NH, S DR, M J, N SAB, C-M FE, M FS, et al. Pharmacodynamic evaluation of suppression of in vitro resistance in Acinetobacter baumannii strains using polymyxin B-based combination therapy. Sci Reports 2021 111 [Internet]. 2021 May 31 [cited 2021 Aug 31];11(1):1–12. Available from: https://www.nature.com/articles/s41598-021-90709-2
  50. 7. K T, D van D. Treatment for carbapenem-resistant Enterobacterales infections: recent advances and future directions. Eur J Clin Microbiol Infect Dis [Internet]. 2021 [cited 2021 Aug 31]; Available from: https://pubmed.ncbi.nlm.nih.gov/34169446
  51. S K, EI K, A G. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection [Internet]. 2020 Dec 1 [cited 2021 Aug 31];48(6):835–51. Available from: https://pubmed.ncbi.nlm.nih.gov/32875545/
  52. T PD, ASL, BRA, M AJ, vD D, C CJ.InfectiousDiseasesSocietyofAmericaGuidanceontheTreatmentofAmpC β-lactamase-ProducingEnterobacterales, Carbapenem-ResistantAcinetobacter baumannii, andStenotrophomonasmaltophiliaInfections. ClinInfectDis. 2021 Dec 5:ciab1013.
  53. F R, S A, C R, D JL, G C, Go J, N, R P, S M, P V, P B, B X. Revisiónsistemática de la literatura y análisis de expertossobre losfactores de riesgoasociados a infeccionescausadas por Pseudomonas aeruginosa o Acinetobacter baumanniiresistentes a carbapenémicosenpacientesadultosenEspaña [A systematic review and expert’s analysis of riskfactors of infections in adultsdue to carbapenem-resistant Pseudomonas aeruginosa or Acinetobacter baumannii in Spain]. RevEspQuimioter. 2021 Aug;34(4):298-307. Spanish.
  54. R A, G F, C G, B C, OA, A F, M E, P F, V M. Multidrug-resistant Acinetobacter baumannii infections in COVID19 patientshospitalized in intensivecareunit. Infection. 2021 Jun 27:1–10.
  55. B G, E A, B H, O P, A E, B N, C MA. Risk factors for nosocomial imipenem-resistantAcinetobacter baumannii infections. Int J InfectDis. 2008 Jan;12(1):16-21.
  56. K A, B F, G M, P F, U MP, S P, De R R, M P, R G, C A, A R, Z R, D E. Multidrug-Resistant Infections and Outcome of Critically Ill Patients with Coronavirus Disease 2019: A Single Center Experience. MicrobDrugResist. 2021;27(9):1167.
  57. Y EK, H WL. Risk Factors for Multidrug-ResistantAcinetobacter baumannii Infections in a Mass Burn CasualtyIncident. J Burn Care Res. 2019 Oct 16;40(6):823-827
  58. S, A, C E, P, L.J.V. The role of combinationtherapy in the treatment of severeinfections caused by carbapenemresistantgram-negatives: a systematic review of clinical studies. BMC InfectDis 21, 545 (2021).
  59. N C. G, J C, AM. Dawn of a New Age: Novel Agents for the Treatment of Carbapenem-Resistant A baumannii.Contagion, June 2021 (Vol. 06, No. 3), Volume 06, Issue 03.
  60. I B, D Y, B RA, P DL. New TreatmentOptionsagainstCarbapenem-ResistantAcinetobacterbaumannii Infections. AntimicrobAgentsChemother. 2018 Dec 21;63(1): e01110-18. K I, VE, P ZD, Tragiannidis A.AcinetobacterbaumanniiAntibioticResistance and Mechanisms. Pathogens. 2021 Mar 19;10(3):373.
  61. A-M JC, Y J, N L, M PT, S K, Sh Z, et al. In Vitro Synergy of Colistin in Combination with Meropenem or Tigecycline against Carbapenem-Resistant Acinetobacter baumannii. Antibiot 2021, Vol 10, Page 880 [Internet]. 2021 Jul 20 [cited 2021 Aug 31];10(7):880. Available from: https://www.mdpi.com/2079-6382/10/7/880/htm
  62. Guide to Treatment of Suspected or Confirmed Infection with Enterobacterales or Acinetobacter resistant to carbapenems. Health Protection Surveillance Center, 2019. Dublin, Ireland.
  63. A D, Or AF, H G, E N WS, G IM. Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics (Basel). 2021 May 25;10(6):630.
  64. R, A, G F, CG. et al. Multidrug-resistant Acinetobacter baumannii infections in COVID-19 patients hospitalized in intensive care unit. Infection (2021).
  65. S W, C D, T S, JT P, N P, S W. Colistin plus Sulbactam or Fosfomycin against Carbapenem-Resistant Acinetobacter baumannii: Improved Efficacy or Decreased Risk of Nephrotoxicity? Infect Chemother. 2021 Mar;53(1):128-140.
  66. L J, S Y, Z F, F B, Z Z, L L, W G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J GlobAntimicrobResist. 2021 Mar;24:136-147.
  67. O S, C R, N AT, L JR. Losing the Battle but Winning the War: Can Defeated Antibacterials Form Alliances to Combat Drug-Resistant Pathogens? Antibiotics (Basel). 2021 May 28;10(6):646.
  68. K S, A R, A A. VirulencePotential and TreatmentOptions of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms. 2021;9(10):2104. Published 2021 Oct 6.
  69. M L. O. L, K L.S, M R. G,M CD T, R, M P, H D D. Acinetobactercalcoaceticus – Acinetobacter baumannii (ACB) complex: occurrenceand profile ofresistancetocarbapenemsandpolymixin B during SARS-CoV-2 pandemic in Pelotas, RS. Research, Society andDevelopment, [S. l.], v. 11, n. 1, p. e42811125128, 2022.
  70. R A, G F, C G, B C, O A, A F, M E, P F, V M. Multidrug-resistantAcinetobacter baumannii infections in COVID-19 patientshospitalized in intensivecareunit. Infection. 2022 Feb;50(1):83-92.
  71. de C HD VM, T F, J C P, T JP, F CMCB, P B C. Trend analysisofcarbapenem-resistantGram-negativebacteriaandantimicrobialconsumption in the post-COVID-19 era: an extra challenge for healthcare institutions. J HospInfect. 2021 Nov19;120:43-47.